Study of plant fibre composites with damage induced by laser and mechanical impacts
Malinowski, Paweł H., Wiesław M. Ostachowicz, Fabienne Touchard, Michel Boustie, Laurence Chocinski-Arnault, Pedro Pascual Gonzalez, Laurent Berthe, Davi Silva de Vasconcellos, and Luigi Sorrentino. “Study of plant fibre composites with damage induced by laser and mechanical impacts.” Composites Part B: Engineering 152 (2018)
Abstract
Polymer composite materials provide good strength to weight ratio and tailored mechanical properties thanks to the reinforcing fibres. Until recently, the need for taking into account the whole life cycle of a composite structure was neglected and only the service aspects were important. Today, the designers of a new composite structure have to take into account the environmental aspects from the sustainability of raw materials to the management of end life products. There are recycling issues related to the most popular composites. A solution for the recycling issue can be sought in green composites with reinforcing fibre originating from plants. The behaviour of eco-composites, when subjected to laser or mechanical impactloadings, is not well known yet. Short fibre composites were made with spruce fibres. Another set of samples was made of flax fibres. Also a woven hemp fabric-based eco-composite was investigated. A fully synthetic woven composite was used for comparison with green composites. Mechanical impacts were performed by means of a falling dart impact testing machine. Laser impacts were made with high power laser source. Four assessment techniques were employed in order to analyse and compare impact damage. Damage detection thresholds for each material and technique were obtained.
… The terahertz spectrometer used was TPS Spectra 3000 from TeraView (Cambridge, United Kingdom) with radiation in the 0.1–3 THz range. The spectrometer is equipped with a moving table to apply xy movements and scan large objects.